Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion.

نویسندگان

  • B Mehul
  • R C Hughes
چکیده

Galectin 3, a 30 kDa galactoside-binding protein distributed widely in epithelial and immune cells, contains no signal sequence and is externalized by a mechanism independent of the endoplasmic reticulum (ER)-Golgi complex. We show here that hamster galectin 3 overexpressed in transfected cos-7 cells is secreted at a very low rate. A chimaera of galectin 3 fused to the N-terminal acylation sequence of protein tyrosine kinase p56(lck), Nt-p56(lck)-galectin 3, which is myristoylated and palmitoylated and rapidly transported to plasma membrane domains, is efficiently released from transfected cells indicating that movement of cytoplasmic galectin 3 to plasma membrane domains is a rate limiting step in lectin secretion. N-terminal acylation is not sufficient for protein secretion since p56(lck) and the chimaera Nt-p56(lck)-CAT are not secreted from transfected cells. The amino-terminal half of galectin 3 is sufficient to direct export of a chimaeric CAT protein indicating that part of the signal for plasma membrane translocation lies in the N-terminal domains of the lectin. Immunofluorescence studies show that Nt-p56(lck)-galectin 3 aggregates underneath the plasma membrane and is released by membrane blebbing. Vesicles of low buoyant density isolated from conditioned medium are enriched in galectin 3. The lectin is initially protected from exogenous collagenase but is later released in soluble protease-sensitive form from the lectin-loaded vesicles. Using murine macrophages, which secrete their endogenous galectin 3 at a moderate rate especially in the presence of Ca2+-ionophores, we were also able to trap a galectin 3-loaded vesicular fraction which was released into the culture supernatant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane

Extracellular vesicles (EVs) are membrane particles secreted from cells into all body fluids. Several EV populations exist differing in size and cellular origin. Using differential centrifugation EVs pelleting at 14,000 g ("microvesicles" (MV)) and 100,000 g ("exosomes") are distinguishable by protein markers. Neutral sphingomyelinase (nSMase) inhibition has been shown to inhibit exosome releas...

متن کامل

یافته های تازه درباره سلولهای پاریتال معده

During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...

متن کامل

Vesicular stomatitis virus glycoprotein does not determine the site of virus release in polarized epithelial cells.

In polarized epithelial cells, the vesicular stomatitis virus glycoprotein is segregated to the basolateral plasma membrane, where budding of the virus takes place. We have generated recombinant viruses expressing mutant glycoproteins without the basolateral-membrane-targeting signal in the cytoplasmic domain. Though about 50% of the mutant glycoproteins were found at the apical plasma membrane...

متن کامل

Plasma membrane microdomains containing vesicular stomatitis virus M protein are separate from microdomains containing G protein and nucleocapsids.

Immunogold electron microscopy and analysis were used to determine the organization of the major structural proteins of vesicular stomatitis virus (VSV) during virus assembly. We determined that matrix protein (M protein) partitions into plasma membrane microdomains in VSV-infected cells as well as in transfected cells expressing M protein. The sizes of the M-protein-containing microdomains out...

متن کامل

I-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis

Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 110 ( Pt 10)  شماره 

صفحات  -

تاریخ انتشار 1997